Tuesday, November 2, 2010

NANOTECHNOLOGY

NANOTECHNOLOGY: Nano is one billionth of one. Now we have the so-called microprocessors and micro array technology that would reach the nano level within a few decades, we suppose. Some call this technology to be nanotechnology and some others name it the molecular nanotechnology, to be specific.
REASONS FOR APPLYING NANOTECH TO BIOLOGICAL SYSTEMS:
Most animal cells are 10,000 to 20,000 nanometers in diameter. This means that nanoscale devices (having at least one dimension less than 100 nanometers) can enter cells and the organelles inside them to interact with DNA and proteins. Tools developed through nanotechnology may be able to detect disease in a very small amount of cells or tissue. They may also be able to enter and monitor cells within a living body. Miniaturization will allow the tools for many different tests to be situated together on the same small device. This means that nanotechnology could make it possible to run many diagnostic tests simultaneously as well as with more sensitivity. In general, nanotechnology may offer a faster and more efficient means for us to do much of what we do now.
NANOMEDICINE:
The emerging field of nanorobotics is aimed at overcoming the
shortcomings present in the traditional way of treatment of patients. Our bodies are filled with intricate, active molecular structures. When those structures are damaged, health suffers. Modern medicine can affect the work of the body in many ways, but from a molecular viewpoint it remains crude. Molecular manufacturing can construct a range of medical instruments and devices with greater abilities. The human body can be seen as a workyard, construction site, and battleground form molecular machines. It works remarkably well; using systems so complex that medical science still doesn’t understand many of them.
BIOMEDICAL APPILICATIONS OF NANOROBOTS:
The enormous potential in the biomedical capabilities of nanorobots and the imprecision and side effects of medical treatments today make nanorobots very desirable. But today, in this revolutionary era we propose for nanomedical robots, since they will have no difficulty in identifying the target site cells even at the very early stages which cannot be done in the traditional treatment and will ultimately be able to track them down and destroy them wherever they may be growing. By having these Robots, we can refine the treatment of diseases by using biomedical, nanotechnological engineering.